iterreg.sparse.estimators.SparseIterReg¶
- class iterreg.sparse.estimators.SparseIterReg(train_ratio=0.8, f_test=1, max_iter=1000, memory=20, prox=CPUDispatcher(<function shrink>), step_ratio=1, verbose=False)¶
- __init__(train_ratio=0.8, f_test=1, max_iter=1000, memory=20, prox=CPUDispatcher(<function shrink>), step_ratio=1, verbose=False)¶
Sparse Recovery with iterative regularization. Chambolle Pock iterations are performed on min J(w) s.t. Xw = y as long as the test MSE decreases.
- Parameters
- train_ratiofloat, optional (default=0.8)
Fraction of the samples used in the training set.
- f_testint, optional (default=1)
The criterion to stop the solver is tested every f_test iterations.
- max_iterint, optional (default=1000)
Maximum number of iterations performed.
- memoryint, optional (default=20)
If the criterion does not decrease for memory computation, the solver stops.
- prox: callable
The proximal operator of the regularizer J at level tau. By default, shrink is used, corresponding to L1.
- step_ratiofloat, optional (default=1)
Ratio between primal and dual stepsizes of the algorithm. A higher step may slow down convergence, but improve the sparsity of the best iterate.
- verbose: bool, optional (default=False)
Solver verbosity.
Methods
__init__
([train_ratio, f_test, max_iter, ...])Sparse Recovery with iterative regularization.
debias
(X, y)fit
(X, y[, train_idx, test_idx])Fit model.
get_params
([deep])Get parameters for this estimator.
predict
(X)Predict using the linear model.
set_params
(**params)Set the parameters of this estimator.