![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
00001 /* 00002 * The GURLS Package in C++ 00003 * 00004 * Copyright (C) 2011-1013, IIT@MIT Lab 00005 * All rights reserved. 00006 * 00007 * authors: M. Santoro 00008 * email: msantoro@mit.edu 00009 * website: http://cbcl.mit.edu/IIT@MIT/IIT@MIT.html 00010 * 00011 * Redistribution and use in source and binary forms, with or without 00012 * modification, are permitted provided that the following conditions 00013 * are met: 00014 * 00015 * * Redistributions of source code must retain the above 00016 * copyright notice, this list of conditions and the following 00017 * disclaimer. 00018 * * Redistributions in binary form must reproduce the above 00019 * copyright notice, this list of conditions and the following 00020 * disclaimer in the documentation and/or other materials 00021 * provided with the distribution. 00022 * * Neither the name(s) of the copyright holders nor the names 00023 * of its contributors or of the Massacusetts Institute of 00024 * Technology or of the Italian Institute of Technology may be 00025 * used to endorse or promote products derived from this software 00026 * without specific prior written permission. 00027 * 00028 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00029 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00030 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00031 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00032 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00033 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00034 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00035 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00036 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00037 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00038 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00039 * POSSIBILITY OF SUCH DAMAGE. 00040 */ 00041 00042 00043 #ifndef _GURLS_RLSGP_H_ 00044 #define _GURLS_RLSGP_H_ 00045 00046 #include <cmath> 00047 00048 #include "gurls++/optimization.h" 00049 00050 #include "gurls++/gmath.h" 00051 #include "gurls++/gmat2d.h" 00052 #include "gurls++/options.h" 00053 #include "gurls++/optlist.h" 00054 00055 namespace gurls { 00056 00062 template <typename T> 00063 class RLSGPRegr: public Optimizer<T>{ 00064 00065 public: 00083 GurlsOptionsList *execute(const gMat2D<T>& X, const gMat2D<T>& Y, const GurlsOptionsList &opt); 00084 }; 00085 00086 00087 template <typename T> 00088 GurlsOptionsList* RLSGPRegr<T>::execute(const gMat2D<T>& X, const gMat2D<T>& Y, const GurlsOptionsList& opt) 00089 { 00090 // noise = opt.singlelambda(opt.paramsel.lambdas); 00091 const gMat2D<T> &ll = opt.getOptValue<OptMatrix<gMat2D<T> > >("paramsel.lambdas"); 00092 T noiselevel = opt.getOptAs<OptFunction>("singlelambda")->getValue(ll.getData(), ll.getSize()); 00093 00094 00095 const gMat2D<T> &K_mat = opt.getOptValue<OptMatrix<gMat2D<T> > >("kernel.K"); 00096 00097 T* K = new T[K_mat.getSize()]; 00098 copy(K, K_mat.getData(), K_mat.getSize()); 00099 00100 //n = size(opt.kernel.K,1); 00101 const unsigned long n = K_mat.rows(); 00102 00103 //T = size(y,2); 00104 const unsigned long t = Y.cols(); 00105 00106 00107 // cfr.L = chol(opt.kernel.K + noise^2*eye(n)); 00108 const T coeff = std::pow(noiselevel, 2); 00109 unsigned long i=0; 00110 for(T* it = K; i<n; ++i, it += n+1) 00111 *it += coeff; 00112 00113 T* retL = new T[n*n]; 00114 cholesky(K, n, n, retL); 00115 00116 // cfr.alpha = cfr.L\(cfr.L'\y); 00117 gMat2D<T>* alpha = new gMat2D<T>(n, t); 00118 copy(alpha->getData(), Y.getData(), Y.getSize()); 00119 00120 mldivide_squared(retL, alpha->getData(), n, n, n, t, CblasTrans); 00121 mldivide_squared(retL, alpha->getData(), n, n, n, t, CblasNoTrans); 00122 00123 00124 GurlsOptionsList* optimizer = new GurlsOptionsList("optimizer"); 00125 00126 // optimizer.L = L; 00127 gMat2D<T>* L = new gMat2D<T>(n, n); 00128 copy(L->getData(), retL, L->getSize()); 00129 optimizer->addOpt("L", new OptMatrix<gMat2D<T> >(*L)); 00130 00131 delete[] retL; 00132 00133 // optimizer.alpha = alpha; 00134 optimizer->addOpt("alpha", new OptMatrix<gMat2D<T> >(*alpha)); 00135 00136 // cfr.X = X; 00137 gMat2D<T>* optX = new gMat2D<T>(X); 00138 optimizer->addOpt("X", new OptMatrix<gMat2D<T> >(*optX)); 00139 00140 return optimizer; 00141 } 00142 00143 } 00144 #endif // _GURLS_RLSGP_H_ 00145