![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
00001 /* 00002 * The GURLS Package in C++ 00003 * 00004 * Copyright (C) 2011-1013, IIT@MIT Lab 00005 * All rights reserved. 00006 * 00007 * authors: M. Santoro 00008 * email: msantoro@mit.edu 00009 * website: http://cbcl.mit.edu/IIT@MIT/IIT@MIT.html 00010 * 00011 * Redistribution and use in source and binary forms, with or without 00012 * modification, are permitted provided that the following conditions 00013 * are met: 00014 * 00015 * * Redistributions of source code must retain the above 00016 * copyright notice, this list of conditions and the following 00017 * disclaimer. 00018 * * Redistributions in binary form must reproduce the above 00019 * copyright notice, this list of conditions and the following 00020 * disclaimer in the documentation and/or other materials 00021 * provided with the distribution. 00022 * * Neither the name(s) of the copyright holders nor the names 00023 * of its contributors or of the Massacusetts Institute of 00024 * Technology or of the Italian Institute of Technology may be 00025 * used to endorse or promote products derived from this software 00026 * without specific prior written permission. 00027 * 00028 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00029 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00030 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00031 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00032 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00033 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00034 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00035 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00036 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00037 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00038 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00039 * POSSIBILITY OF SUCH DAMAGE. 00040 */ 00041 00042 00043 #ifndef _GURLS_NORMTESTZSCORE_H_ 00044 #define _GURLS_NORMTESTZSCORE_H_ 00045 00046 00047 #include "gurls++/norm.h" 00048 #include "gurls++/gmath.h" 00049 #include "gurls++/optmatrix.h" 00050 00051 namespace gurls { 00052 00058 template <typename T> 00059 class NormTestZScore: public Norm<T> 00060 { 00061 public: 00075 GurlsOptionsList* execute(const gMat2D<T>& X, const gMat2D<T>& Y, const GurlsOptionsList& opt) throw(gException); 00076 00077 protected: 00078 void centerRescale(gMat2D<T> &M, const T *stdDevs, const T *means); 00079 }; 00080 00081 template<typename T> 00082 GurlsOptionsList* NormTestZScore<T>::execute(const gMat2D<T>& X, const gMat2D<T>& Y, const GurlsOptionsList& opt) throw(gException) 00083 { 00084 // [n,d] = size(X); 00085 const unsigned long n = X.rows(); 00086 const unsigned long d = X.cols(); 00087 const unsigned long m = Y.rows(); 00088 const unsigned long t = Y.cols(); 00089 00090 GurlsOptionsList* norm = new GurlsOptionsList("norm"); 00091 00092 if(n > 0ul && d > 0ul) 00093 { 00094 const gMat2D<T> &v_meanX = opt.getOptValue<OptMatrix<gMat2D<T> > >("meanX"); 00095 const gMat2D<T> &v_stdX = opt.getOptValue<OptMatrix<gMat2D<T> > >("stdX"); 00096 00097 gMat2D<T>* retX = new gMat2D<T>(n, d); 00098 copy(retX->getData(), X.getData(), retX->getSize()); 00099 00100 centerRescale(*retX, v_stdX.getData(), v_meanX.getData()); 00101 norm->addOpt("X", new OptMatrix<gMat2D<T> >(*retX)); 00102 } 00103 00104 if(m > 0ul && t > 0ul) 00105 { 00106 const gMat2D<T> &v_meanY = opt.getOptValue<OptMatrix<gMat2D<T> > >("meanY"); 00107 const gMat2D<T> &v_stdY = opt.getOptValue<OptMatrix<gMat2D<T> > >("stdY"); 00108 00109 gMat2D<T>* retY = new gMat2D<T>(m, t); 00110 copy(retY->getData(), Y.getData(), retY->getSize()); 00111 00112 centerRescale(*retY, v_stdY.getData(), v_meanY.getData()); 00113 norm->addOpt("Y", new OptMatrix<gMat2D<T> >(*retY)); 00114 } 00115 00116 return norm; 00117 } 00118 00119 template<typename T> 00120 void NormTestZScore<T>::centerRescale(gMat2D<T> &M, const T *stdDevs, const T *means) 00121 { 00122 const unsigned long n = M.rows(); 00123 const unsigned long d = M.cols(); 00124 00125 // X = X - repmat(meanX, n, 1); 00126 // X = X./repmat(stdX, n, 1); 00127 T* column = M.getData(); 00128 const T* std_it = stdDevs; 00129 const T* mean_it = means; 00130 for(unsigned long i=0; i<d; ++i, column+=n, ++std_it, ++mean_it) 00131 { 00132 axpy(n, (T)-1.0, mean_it, 0, column, 1); 00133 scal(n, (T)1.0/(*std_it), column, 1); 00134 } 00135 } 00136 00137 } 00138 00139 #endif //_GURLS_NORMTESTZSCORE_H_