![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
PredRandFeats is the sub-class of Prediction that computes the predictions of the linear classifier stored in opt.rls.W, and obtained the Random Features approach proposed in: Ali Rahimi, Ben Recht; Random Features for Large-Scale Kernel Machines; in Neural Information Processing Systems (NIPS) 2007. More...
#include <predrandfeats.h>
Public Member Functions | |
GurlsOptionsList * | execute (const gMat2D< T > &X, const gMat2D< T > &Y, const GurlsOptionsList &opt) |
computes the predictions of the linear classifier stored in opt.rls.W | |
Static Public Member Functions | |
static Prediction< T > * | factory (const std::string &id) throw (BadPredictionCreation) |
Factory function returning a pointer to the newly created object. |
on the samples passed in the X matrix.
Definition at line 67 of file predrandfeats.h.
GurlsOptionsList * gurls::PredRandFeats< T >::execute | ( | const gMat2D< T > & | X, |
const gMat2D< T > & | Y, | ||
const GurlsOptionsList & | opt | ||
) | [virtual] |
X | input data matrix |
Y | labels matrix |
opt | structure of options with the following fields (and subfields):
|
Implements gurls::Prediction< T >.
Definition at line 84 of file predrandfeats.h.
{ // G = rp_apply_real(X, opt.rls.proj); const gMat2D<T>& proj = opt.getOptValue<OptMatrix<gMat2D<T> > >("optimizer.proj"); gMat2D<T> *G = rp_apply_real(X, proj); // scores = G*opt.rls.W; const gMat2D<T>& W = opt.getOptValue<OptMatrix<gMat2D<T> > >("optimizer.W"); gMat2D<T> *scores_mat = new gMat2D<T>(G->rows(), W.cols()); dot(G->getData(), W.getData(), scores_mat->getData(), G->rows(), G->cols(), W.rows(), W.cols(), G->rows(), W.cols(), CblasNoTrans, CblasNoTrans, CblasColMajor); GurlsOptionsList* pred = new GurlsOptionsList("pred"); pred->addOpt("scores", new OptMatrix<gMat2D<T> >(*scores_mat)); return pred; }
static Prediction<T>* gurls::Prediction< T >::factory | ( | const std::string & | id | ) | throw (BadPredictionCreation) [inline, static, inherited] |
Definition at line 112 of file pred.h.
{ if(id == "primal") return new PredPrimal<T>; if(id == "dual") return new PredDual<T>; if(id == "gpregr") return new PredGPRegr<T>; if(id == "randfeats") return new PredRandFeats<T>; throw BadPredictionCreation(id); }