![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
PredDual is the sub-class of Prediction that computes the predictions of a linear classifier in the dual formulation.
#include <dual.h>
Public Member Functions | |
OptMatrix< gMat2D< T > > * | execute (const gMat2D< T > &X, const gMat2D< T > &Y, const GurlsOptionsList &opt) |
Computes the predictions of the linear classifier stored in opt.W and computed using the primal formulation, on the samples passed in the X matrix. | |
Static Public Member Functions | |
static Prediction< T > * | factory (const std::string &id) throw (BadPredictionCreation) |
Factory function returning a pointer to the newly created object. |
OptMatrix< gMat2D< T > > * gurls::PredDual< T >::execute | ( | const gMat2D< T > & | X, |
const gMat2D< T > & | Y, | ||
const GurlsOptionsList & | opt | ||
) | [virtual] |
X | input data matrix |
Y | labels matrix |
opt | options with the following:
|
Implements gurls::Prediction< T >.
Definition at line 85 of file dual.h.
{ if(opt.hasOpt("kernel")) { if(opt.getOptValue<OptString>("kernel.type") == "linear") { PredPrimal<T> pred; return pred.execute(X, Y, opt); } } const gMat2D<T> &K = opt.getOptValue<OptMatrix<gMat2D<T> > >("predkernel.K"); const gMat2D<T> &C = opt.getOptValue<OptMatrix<gMat2D<T> > >("optimizer.C"); gMat2D<T>* Z = new gMat2D<T>(K.rows(), C.cols()); dot(K.getData(), C.getData(), Z->getData(), K.rows(), K.cols(), C.rows(), C.cols(), Z->rows(), Z->cols(), CblasNoTrans, CblasNoTrans, CblasColMajor); return new OptMatrix<gMat2D<T> >(*Z); }
static Prediction<T>* gurls::Prediction< T >::factory | ( | const std::string & | id | ) | throw (BadPredictionCreation) [inline, static, inherited] |
Definition at line 112 of file pred.h.
{ if(id == "primal") return new PredPrimal<T>; if(id == "dual") return new PredDual<T>; if(id == "gpregr") return new PredGPRegr<T>; if(id == "randfeats") return new PredRandFeats<T>; throw BadPredictionCreation(id); }