![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
ParamSelHoDual is the subclass of ParamSelection that implements hold-out cross validation with the dual formulation of RLS.
#include <hodual.h>
Public Member Functions | |
GurlsOptionsList * | execute (const gMat2D< T > &X, const gMat2D< T > &Y, const GurlsOptionsList &opt) |
Performs parameter selection when the dual formulation of RLS is used. | |
Static Public Member Functions | |
static ParamSelection< T > * | factory (const std::string &id) throw (BadParamSelectionCreation) |
Factory function returning a pointer to the newly created object. | |
Protected Member Functions | |
virtual void | eig_function (T *A, T *L, int A_rows_cols, unsigned long n, const GurlsOptionsList &opt) |
Auxiliary method used to call the right eig/svd function for this class. | |
virtual unsigned long | getRank (unsigned long last, unsigned long n, unsigned long d, bool linearKernel, const GurlsOptionsList &opt) |
GurlsOptionsList * gurls::ParamSelHoDual< T >::execute | ( | const gMat2D< T > & | X, |
const gMat2D< T > & | Y, | ||
const GurlsOptionsList & | opt | ||
) | [virtual] |
The hold-out approach is used. The performance measure specified by opt.hoperf is maximized.
X | input data matrix |
Y | labels matrix |
opt | options with the following: |
Implements gurls::ParamSelection< T >.
Definition at line 156 of file hodual.h.
{ // [n,T] = size(y); const unsigned long n = Y.rows(); const unsigned long t = Y.cols(); const unsigned long x_rows = X.rows(); const unsigned long d = X.cols(); GurlsOptionsList* nestedOpt = new GurlsOptionsList("nested"); nestedOpt->copyOpt("kernel", opt); nestedOpt->addOpt("predkernel", new GurlsOptionsList("predkernel")); const GurlsOptionsList* split = opt.getOptAs<GurlsOptionsList>("split"); const gMat2D< unsigned long > &indices_mat = split->getOptValue<OptMatrix<gMat2D< unsigned long > > >("indices"); const gMat2D< unsigned long > &lasts_mat = split->getOptValue<OptMatrix<gMat2D< unsigned long > > >("lasts"); const unsigned long *lasts = lasts_mat.getData(); const unsigned long* indices_buffer = indices_mat.getData(); const GurlsOptionsList* kernel = opt.getOptAs<GurlsOptionsList>("kernel"); const gMat2D<T> &K = kernel->getOptValue<OptMatrix<gMat2D<T> > >("K"); const bool linearKernel = kernel->getOptAsString("type") == "linear"; const unsigned long k_rows = K.rows(); int tot = static_cast<int>(std::ceil( opt.getOptAsNumber("nlambda"))); int nholdouts = static_cast<int>(std::ceil( opt.getOptAsNumber("nholdouts"))); gMat2D<T> *LAMBDA = new gMat2D<T>(1, t); T* lambdas = LAMBDA->getData(); set(lambdas, (T)0.0, t); gMat2D<T>* acc_avg_mat = new gMat2D<T>(tot, t); T* acc_avg = acc_avg_mat->getData(); set(acc_avg, (T)0.0, tot*t); // for nh = 1:opt.nholdouts GurlsOptionsList* optimizer = new GurlsOptionsList("optimizer"); Performance<T>* perfClass = Performance<T>::factory(opt.getOptAsString("hoperf")); PredDual<T> dual; nestedOpt->addOpt("optimizer",optimizer); gMat2D<T>* perf_mat = new gMat2D<T>(nholdouts, tot*t); T* perf = perf_mat->getData(); gMat2D<T>* guesses_mat = new gMat2D<T>(nholdouts, tot); T* ret_guesses = guesses_mat->getData(); gMat2D<T>* lambdas_round_mat = new gMat2D<T>(nholdouts, t); T* lambdas_round = lambdas_round_mat->getData(); for(int nh=0; nh<nholdouts; ++nh) { unsigned long last = lasts[nh]; unsigned long* tr = new unsigned long[last]; unsigned long* va = new unsigned long[n-last]; //copy int tr indices_ from n*nh to last copy<unsigned long>(tr,indices_buffer + n*nh, last); //copy int va indices_ from n*nh+last to n*nh+n copy<unsigned long>(va,(indices_buffer+ n*nh+last), n-last); //Get K(tr,tr) from K T* Q = new T[last*last]; copy_submatrix(Q, K.getData(), k_rows, last, last, tr, tr); T *L = new T[last]; eig_function(Q, L, last, n, opt); unsigned long r = getRank(last, n, d, linearKernel, opt); if(!linearKernel) { // opt.predkernel.K = opt.kernel.K(va,tr);%nva x ntr gMat2D<T>* predK = new gMat2D<T>(n-last, last); copy_submatrix(predK->getData(), K.getData(), k_rows, n-last, last, va, tr); GurlsOptionsList* predkernel = nestedOpt->getOptAs<GurlsOptionsList>("predkernel"); predkernel->removeOpt("K"); predkernel->addOpt("K", new OptMatrix<gMat2D<T> >(*predK)); } T* guesses = lambdaguesses(L, last, r, last, tot, (T)(opt.getOptAsNumber("smallnumber"))); // ap = zeros(tot,T); T* ap = new T[tot*t]; T* Ytr = new T[last*t]; subMatrixFromRows(Y.getData(), n, t, tr, last, Ytr); // QtY = Q'*y(tr,:); T* Qty = new T[last*t]; dot(Q, Ytr, Qty, last, last, last, t, last, t, CblasTrans, CblasNoTrans, CblasColMajor); delete [] Ytr; // for i = 1:tot // opt.rls.X = X(tr,:); gMat2D<T>* rlsX = new gMat2D<T>(last, d); subMatrixFromRows(X.getData(), x_rows, d, tr, last, rlsX->getData()); delete [] tr; optimizer->removeOpt("X"); optimizer->addOpt("X", new OptMatrix<gMat2D<T> >(*rlsX)); gMat2D<T>* xx = new gMat2D<T>(n-last, d); subMatrixFromRows(X.getData(), x_rows, d, va, n-last, xx->getData()); gMat2D<T>* yy = new gMat2D<T>(n-last, t); subMatrixFromRows(Y.getData(), n, t, va, n-last, yy->getData()); delete [] va; gMat2D<T>* C = new gMat2D<T>(last, t); optimizer->removeOpt("C"); optimizer->addOpt("C", new OptMatrix<gMat2D<T> >(*C)); gMat2D<T>* W = NULL; if(linearKernel) { W = new gMat2D<T>(d, t); optimizer->removeOpt("W"); optimizer->addOpt("W", new OptMatrix<gMat2D<T> >(*W)); } T* work = new T[last*(last+1)]; for(int i=0; i<tot; ++i) { // opt.rls.C = rls_eigen(Q,L,QtY,guesses(i),ntr); rls_eigen(Q, L, Qty, C->getData(), guesses[i], last, last, last, last, last, t, work); if(linearKernel) { // opt.rls.W = X(tr,:)'*opt.rls.C; % dxT = (ntrxd)'*ntrxT last*d last*last dot(rlsX->getData(), C->getData(), W->getData(), last, d, last, t, d, t, CblasTrans, CblasNoTrans, CblasColMajor); } // else // opt.predkernel.K = opt.kernel.K(va,tr);%nva x ntr // (see above) OptMatrix<gMat2D<T> >* ret_pred = dual.execute(*xx, *yy, *nestedOpt); nestedOpt->addOpt("pred", ret_pred); // opt.perf = opt.hoperf(Xva,yva,opt); GurlsOptionsList* ret_perf = perfClass->execute(*xx, *yy, *nestedOpt); gMat2D<T> &forho_vec = ret_perf->getOptValue<OptMatrix<gMat2D<T> > >("forho"); // for t = 1:T // ap(i,t) = opt.perf.forho(t); copy(ap+i, forho_vec.getData(), t, tot, 1); nestedOpt->removeOpt("pred"); delete ret_perf; }//for tot delete [] Q; delete [] Qty; delete [] L; delete [] work; delete xx; delete yy; //[dummy,idx] = max(ap,[],1); work = NULL; unsigned long* idx = new unsigned long[t]; indicesOfMax(ap, tot, t, idx, work, 1); //vout.lambdas_round{nh} = guesses(idx); T* lambdas_nh = new T[t]; copyLocations(idx, guesses, t, tot, lambdas_nh); copy(lambdas_round +nh, lambdas_nh, t, nholdouts, 1); //add lambdas_nh to lambdas axpy< T >(t, (T)1, lambdas_nh, 1, lambdas, 1); delete [] lambdas_nh; delete [] idx; // vout.perf{nh} = ap; copy(perf + nh, ap, tot*t, nholdouts, 1); axpy(tot*t, (T)1, ap, 1, acc_avg, 1); // vout.guesses{nh} = guesses; copy(ret_guesses + nh, guesses, tot, nholdouts, 1); delete [] guesses; delete [] ap; }//for nholdouts delete nestedOpt; delete perfClass; GurlsOptionsList* paramsel; if(opt.hasOpt("paramsel")) { GurlsOptionsList* tmp_opt = new GurlsOptionsList("tmp"); tmp_opt->copyOpt("paramsel", opt); paramsel = GurlsOptionsList::dynacast(tmp_opt->getOpt("paramsel")); tmp_opt->removeOpt("paramsel", false); delete tmp_opt; paramsel->removeOpt("perf"); paramsel->removeOpt("guesses"); paramsel->removeOpt("acc_avg"); paramsel->removeOpt("lambdas"); paramsel->removeOpt("lambdas_round"); } else paramsel = new GurlsOptionsList("paramsel"); paramsel->addOpt("perf", new OptMatrix<gMat2D<T> >(*perf_mat)); paramsel->addOpt("guesses", new OptMatrix<gMat2D<T> >(*guesses_mat)); // if numel(vout.lambdas_round) > 1 // lambdas = cell2mat(vout.lambdas_round'); // vout.lambdas = mean(lambdas); // else // vout.lambdas = vout.lambdas_round{1}; // end if(nholdouts>1) { scal(t, (T)1.0/nholdouts, lambdas, 1); scal(t, (T)1.0/nholdouts, acc_avg, 1); } paramsel->addOpt("acc_avg", new OptMatrix<gMat2D<T> >(*acc_avg_mat)); paramsel->addOpt("lambdas", new OptMatrix<gMat2D<T> >(*LAMBDA)); paramsel->addOpt("lambdas_round", new OptMatrix<gMat2D<T> >(*lambdas_round_mat)); return paramsel; }
static ParamSelection<T>* gurls::ParamSelection< T >::factory | ( | const std::string & | id | ) | throw (BadParamSelectionCreation) [inline, static, inherited] |
Definition at line 146 of file paramsel.h.
{ if(id == "loocvprimal") return new ParamSelLoocvPrimal<T>; if(id == "loocvdual") return new ParamSelLoocvDual<T>; if(id == "fixlambda") return new ParamSelFixLambda<T>; if(id == "calibratesgd") return new ParamSelCalibrateSGD<T>; if(id == "siglam") return new ParamSelSiglam<T>; if(id == "siglamho") return new ParamSelSiglamHo<T>; if(id == "hodual") return new ParamSelHoDual<T>; if(id == "hodualr") return new ParamSelHoDualr<T>; if(id == "hoprimal") return new ParamSelHoPrimal<T>; if(id == "hoprimalr") return new ParamSelHoPrimalr<T>; if(id == "fixsiglam") return new ParamSelFixSigLam<T>; if(id == "loogpregr") return new ParamSelLooGPRegr<T>; if(id == "hogpregr") return new ParamSelHoGPRegr<T>; if(id == "siglamloogpregr") return new ParamSelSiglamLooGPRegr<T>; if(id == "siglamhogpregr") return new ParamSelSiglamHoGPRegr<T>; throw BadParamSelectionCreation(id); }