![]() |
GURLS++
2.0.00
C++ Implementation of GURLS Matlab Toolbox
|
ParamSelHoDual is the subclass of ParamSelection that implements hold-out cross validation with the dual formulation of RLS.
#include <hodual.h>


Public Member Functions | |
| GurlsOptionsList * | execute (const gMat2D< T > &X, const gMat2D< T > &Y, const GurlsOptionsList &opt) |
| Performs parameter selection when the dual formulation of RLS is used. | |
Static Public Member Functions | |
| static ParamSelection< T > * | factory (const std::string &id) throw (BadParamSelectionCreation) |
| Factory function returning a pointer to the newly created object. | |
Protected Member Functions | |
| virtual void | eig_function (T *A, T *L, int A_rows_cols, unsigned long n, const GurlsOptionsList &opt) |
| Auxiliary method used to call the right eig/svd function for this class. | |
| virtual unsigned long | getRank (unsigned long last, unsigned long n, unsigned long d, bool linearKernel, const GurlsOptionsList &opt) |
| GurlsOptionsList * gurls::ParamSelHoDual< T >::execute | ( | const gMat2D< T > & | X, |
| const gMat2D< T > & | Y, | ||
| const GurlsOptionsList & | opt | ||
| ) | [virtual] |
The hold-out approach is used. The performance measure specified by opt.hoperf is maximized.
| X | input data matrix |
| Y | labels matrix |
| opt | options with the following: |
Implements gurls::ParamSelection< T >.
Definition at line 156 of file hodual.h.
{
// [n,T] = size(y);
const unsigned long n = Y.rows();
const unsigned long t = Y.cols();
const unsigned long x_rows = X.rows();
const unsigned long d = X.cols();
GurlsOptionsList* nestedOpt = new GurlsOptionsList("nested");
nestedOpt->copyOpt("kernel", opt);
nestedOpt->addOpt("predkernel", new GurlsOptionsList("predkernel"));
const GurlsOptionsList* split = opt.getOptAs<GurlsOptionsList>("split");
const gMat2D< unsigned long > &indices_mat = split->getOptValue<OptMatrix<gMat2D< unsigned long > > >("indices");
const gMat2D< unsigned long > &lasts_mat = split->getOptValue<OptMatrix<gMat2D< unsigned long > > >("lasts");
const unsigned long *lasts = lasts_mat.getData();
const unsigned long* indices_buffer = indices_mat.getData();
const GurlsOptionsList* kernel = opt.getOptAs<GurlsOptionsList>("kernel");
const gMat2D<T> &K = kernel->getOptValue<OptMatrix<gMat2D<T> > >("K");
const bool linearKernel = kernel->getOptAsString("type") == "linear";
const unsigned long k_rows = K.rows();
int tot = static_cast<int>(std::ceil( opt.getOptAsNumber("nlambda")));
int nholdouts = static_cast<int>(std::ceil( opt.getOptAsNumber("nholdouts")));
gMat2D<T> *LAMBDA = new gMat2D<T>(1, t);
T* lambdas = LAMBDA->getData();
set(lambdas, (T)0.0, t);
gMat2D<T>* acc_avg_mat = new gMat2D<T>(tot, t);
T* acc_avg = acc_avg_mat->getData();
set(acc_avg, (T)0.0, tot*t);
// for nh = 1:opt.nholdouts
GurlsOptionsList* optimizer = new GurlsOptionsList("optimizer");
Performance<T>* perfClass = Performance<T>::factory(opt.getOptAsString("hoperf"));
PredDual<T> dual;
nestedOpt->addOpt("optimizer",optimizer);
gMat2D<T>* perf_mat = new gMat2D<T>(nholdouts, tot*t);
T* perf = perf_mat->getData();
gMat2D<T>* guesses_mat = new gMat2D<T>(nholdouts, tot);
T* ret_guesses = guesses_mat->getData();
gMat2D<T>* lambdas_round_mat = new gMat2D<T>(nholdouts, t);
T* lambdas_round = lambdas_round_mat->getData();
for(int nh=0; nh<nholdouts; ++nh)
{
unsigned long last = lasts[nh];
unsigned long* tr = new unsigned long[last];
unsigned long* va = new unsigned long[n-last];
//copy int tr indices_ from n*nh to last
copy<unsigned long>(tr,indices_buffer + n*nh, last);
//copy int va indices_ from n*nh+last to n*nh+n
copy<unsigned long>(va,(indices_buffer+ n*nh+last), n-last);
//Get K(tr,tr) from K
T* Q = new T[last*last];
copy_submatrix(Q, K.getData(), k_rows, last, last, tr, tr);
T *L = new T[last];
eig_function(Q, L, last, n, opt);
unsigned long r = getRank(last, n, d, linearKernel, opt);
if(!linearKernel)
{
// opt.predkernel.K = opt.kernel.K(va,tr);%nva x ntr
gMat2D<T>* predK = new gMat2D<T>(n-last, last);
copy_submatrix(predK->getData(), K.getData(), k_rows, n-last, last, va, tr);
GurlsOptionsList* predkernel = nestedOpt->getOptAs<GurlsOptionsList>("predkernel");
predkernel->removeOpt("K");
predkernel->addOpt("K", new OptMatrix<gMat2D<T> >(*predK));
}
T* guesses = lambdaguesses(L, last, r, last, tot, (T)(opt.getOptAsNumber("smallnumber")));
// ap = zeros(tot,T);
T* ap = new T[tot*t];
T* Ytr = new T[last*t];
subMatrixFromRows(Y.getData(), n, t, tr, last, Ytr);
// QtY = Q'*y(tr,:);
T* Qty = new T[last*t];
dot(Q, Ytr, Qty, last, last, last, t, last, t, CblasTrans, CblasNoTrans, CblasColMajor);
delete [] Ytr;
// for i = 1:tot
// opt.rls.X = X(tr,:);
gMat2D<T>* rlsX = new gMat2D<T>(last, d);
subMatrixFromRows(X.getData(), x_rows, d, tr, last, rlsX->getData());
delete [] tr;
optimizer->removeOpt("X");
optimizer->addOpt("X", new OptMatrix<gMat2D<T> >(*rlsX));
gMat2D<T>* xx = new gMat2D<T>(n-last, d);
subMatrixFromRows(X.getData(), x_rows, d, va, n-last, xx->getData());
gMat2D<T>* yy = new gMat2D<T>(n-last, t);
subMatrixFromRows(Y.getData(), n, t, va, n-last, yy->getData());
delete [] va;
gMat2D<T>* C = new gMat2D<T>(last, t);
optimizer->removeOpt("C");
optimizer->addOpt("C", new OptMatrix<gMat2D<T> >(*C));
gMat2D<T>* W = NULL;
if(linearKernel)
{
W = new gMat2D<T>(d, t);
optimizer->removeOpt("W");
optimizer->addOpt("W", new OptMatrix<gMat2D<T> >(*W));
}
T* work = new T[last*(last+1)];
for(int i=0; i<tot; ++i)
{
// opt.rls.C = rls_eigen(Q,L,QtY,guesses(i),ntr);
rls_eigen(Q, L, Qty, C->getData(), guesses[i], last, last, last, last, last, t, work);
if(linearKernel)
{
// opt.rls.W = X(tr,:)'*opt.rls.C; % dxT = (ntrxd)'*ntrxT last*d last*last
dot(rlsX->getData(), C->getData(), W->getData(), last, d, last, t, d, t, CblasTrans, CblasNoTrans, CblasColMajor);
}
// else
// opt.predkernel.K = opt.kernel.K(va,tr);%nva x ntr
// (see above)
OptMatrix<gMat2D<T> >* ret_pred = dual.execute(*xx, *yy, *nestedOpt);
nestedOpt->addOpt("pred", ret_pred);
// opt.perf = opt.hoperf(Xva,yva,opt);
GurlsOptionsList* ret_perf = perfClass->execute(*xx, *yy, *nestedOpt);
gMat2D<T> &forho_vec = ret_perf->getOptValue<OptMatrix<gMat2D<T> > >("forho");
// for t = 1:T
// ap(i,t) = opt.perf.forho(t);
copy(ap+i, forho_vec.getData(), t, tot, 1);
nestedOpt->removeOpt("pred");
delete ret_perf;
}//for tot
delete [] Q;
delete [] Qty;
delete [] L;
delete [] work;
delete xx;
delete yy;
//[dummy,idx] = max(ap,[],1);
work = NULL;
unsigned long* idx = new unsigned long[t];
indicesOfMax(ap, tot, t, idx, work, 1);
//vout.lambdas_round{nh} = guesses(idx);
T* lambdas_nh = new T[t];
copyLocations(idx, guesses, t, tot, lambdas_nh);
copy(lambdas_round +nh, lambdas_nh, t, nholdouts, 1);
//add lambdas_nh to lambdas
axpy< T >(t, (T)1, lambdas_nh, 1, lambdas, 1);
delete [] lambdas_nh;
delete [] idx;
// vout.perf{nh} = ap;
copy(perf + nh, ap, tot*t, nholdouts, 1);
axpy(tot*t, (T)1, ap, 1, acc_avg, 1);
// vout.guesses{nh} = guesses;
copy(ret_guesses + nh, guesses, tot, nholdouts, 1);
delete [] guesses;
delete [] ap;
}//for nholdouts
delete nestedOpt;
delete perfClass;
GurlsOptionsList* paramsel;
if(opt.hasOpt("paramsel"))
{
GurlsOptionsList* tmp_opt = new GurlsOptionsList("tmp");
tmp_opt->copyOpt("paramsel", opt);
paramsel = GurlsOptionsList::dynacast(tmp_opt->getOpt("paramsel"));
tmp_opt->removeOpt("paramsel", false);
delete tmp_opt;
paramsel->removeOpt("perf");
paramsel->removeOpt("guesses");
paramsel->removeOpt("acc_avg");
paramsel->removeOpt("lambdas");
paramsel->removeOpt("lambdas_round");
}
else
paramsel = new GurlsOptionsList("paramsel");
paramsel->addOpt("perf", new OptMatrix<gMat2D<T> >(*perf_mat));
paramsel->addOpt("guesses", new OptMatrix<gMat2D<T> >(*guesses_mat));
// if numel(vout.lambdas_round) > 1
// lambdas = cell2mat(vout.lambdas_round');
// vout.lambdas = mean(lambdas);
// else
// vout.lambdas = vout.lambdas_round{1};
// end
if(nholdouts>1)
{
scal(t, (T)1.0/nholdouts, lambdas, 1);
scal(t, (T)1.0/nholdouts, acc_avg, 1);
}
paramsel->addOpt("acc_avg", new OptMatrix<gMat2D<T> >(*acc_avg_mat));
paramsel->addOpt("lambdas", new OptMatrix<gMat2D<T> >(*LAMBDA));
paramsel->addOpt("lambdas_round", new OptMatrix<gMat2D<T> >(*lambdas_round_mat));
return paramsel;
}
| static ParamSelection<T>* gurls::ParamSelection< T >::factory | ( | const std::string & | id | ) | throw (BadParamSelectionCreation) [inline, static, inherited] |
Definition at line 146 of file paramsel.h.
{
if(id == "loocvprimal")
return new ParamSelLoocvPrimal<T>;
if(id == "loocvdual")
return new ParamSelLoocvDual<T>;
if(id == "fixlambda")
return new ParamSelFixLambda<T>;
if(id == "calibratesgd")
return new ParamSelCalibrateSGD<T>;
if(id == "siglam")
return new ParamSelSiglam<T>;
if(id == "siglamho")
return new ParamSelSiglamHo<T>;
if(id == "hodual")
return new ParamSelHoDual<T>;
if(id == "hodualr")
return new ParamSelHoDualr<T>;
if(id == "hoprimal")
return new ParamSelHoPrimal<T>;
if(id == "hoprimalr")
return new ParamSelHoPrimalr<T>;
if(id == "fixsiglam")
return new ParamSelFixSigLam<T>;
if(id == "loogpregr")
return new ParamSelLooGPRegr<T>;
if(id == "hogpregr")
return new ParamSelHoGPRegr<T>;
if(id == "siglamloogpregr")
return new ParamSelSiglamLooGPRegr<T>;
if(id == "siglamhogpregr")
return new ParamSelSiglamHoGPRegr<T>;
throw BadParamSelectionCreation(id);
}